Organometallic Sandwich Chains Made of Conjugated Polyenes and Metal-Metal Chains

Tetsuro Murahashi,* Eiko Mochizuki, Yasushi Kai, and Hideo Kurosawa*

Department of Applied Chemistry, Faculty of Engineering

 Osaka University, Suita, Osaka, 565-0871, JapanReceived July 9, 1999

The combination of multiple low-dimensionally extended molecules by chemical bonding of considerable strength would become a powerful methodology for the construction of new functional molecular organizations. Among the extended systems, conjugated polyenes such as polyacetylene are among the most ubiquitous and simple sp^{2}-carbon chain frameworks, of which a number of fascinating properties have been intensively explored. ${ }^{1}$ Another extended framework made of only transition metals, such as a metal-metal bond chain, is likewise fascinating. ${ }^{2}$ We aimed to directly combine both kinds of intriguing chains by utilizing a $\mathrm{p} \pi$-electron sequence of conjugated polyenes for the bonding with a metal-metal bonded array. ${ }^{3,4}$ Here, we report synthesis and structures of one-dimensionally expanded organometallic sandwich complexes, made of two conjugated polyenes $-(\mathrm{CH})_{m}-$ and a metal-metal bond chain $-\mathrm{Pd}_{n}{ }^{2+}$. The full-hybrid chain-linkage is revealed to be attained by two modes of sequential coordination bonds.

The "naked" $\mathrm{Pd}_{n}{ }^{2+}$ chain, though unstable for isolation, can be a discrete molecular ion consisting of $(n-1) \mathrm{Pd}-\mathrm{Pd}$ bonds with $2(n-1)$ electrons, ${ }^{5}$ which are expected to be supplied by a combination of $\{1 \mathrm{Pd}(\mathrm{II})+(n-1) \operatorname{Pd}(0)\}$ because a high-valent $\mathrm{Pd}($ II $)$ can be regarded as a 0 e-contributor and a low-valent Pd (0) as a $2 \mathrm{e}-$ contributor along the $\mathrm{Pd}-\mathrm{Pd}$ bond direction. As shown in Chart 1, we assembled mononuclear palladium substrates

Chart 1

bearing the correct number of electrons and substitutional lability ${ }^{6,7}$ along the conjugated polyene chains, forming a linear $\mathrm{Pd}-\mathrm{Pd}$ bond chain.

[^0]

Figure 1. ORTEP drawing of $\mathbf{1}^{\prime}\left(\mathrm{BAr}_{\mathrm{f}}\right.$ anions were omitted for clarify). Selected bond distances (\AA) and angles $(\mathrm{deg}): ~ \mathrm{Pd} 1-\mathrm{Pd} 2=2.7322(8)$, $\mathrm{Pd} 2-\mathrm{Pd} 2 *=2.654(1), \mathrm{Pd} 1-\mathrm{C} 1=2.282(7), \mathrm{Pd} 1-\mathrm{C} 2=2.168(7), \mathrm{Pd} 1-$ $\mathrm{C} 3=2.242(6), \mathrm{Pd} 2-\mathrm{C} 4=2.182(6), \mathrm{Pd} 2-\mathrm{C} 5=2.219(6), \mathrm{Pd} 2 *-\mathrm{C} 6=$ $2.223(6), \mathrm{Pd} 2-\mathrm{C} 7=2.185(6), \mathrm{Pd} 1-\mathrm{C} 8=2.236(7), \mathrm{Pd} 1-\mathrm{C} 9=2.206-$ (7), $\mathrm{Pd} 1-\mathrm{C} 10=2.421$ (8), $\mathrm{C} 1-\mathrm{C} 2=1.393(10), \mathrm{C} 2-\mathrm{C} 3=1.420(10)$, $\mathrm{C} 3-\mathrm{C} 4=1.425(10), \mathrm{C} 4-\mathrm{C} 5=1.410(9), \mathrm{C} 5-\mathrm{C} 6=1.419(10), \mathrm{C} 6-\mathrm{C} 7 *$ $=1.408(10), \mathrm{C} 7-\mathrm{C} 8=1.42(1), \mathrm{C} 8-\mathrm{C} 9=1.454(10), \mathrm{C} 9-\mathrm{C} 10=1.43-$ (1), $\mathrm{Pd} 1-\mathrm{Pd} 2-\mathrm{Pd} 2 *=178.25(4), \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3=119.9(7), \mathrm{C} 2-\mathrm{C} 3-$ $\mathrm{C} 4=122.0(7), \mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=123.8(7), \mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6=122.9(6), \mathrm{C} 5-$ $\mathrm{C} 6-\mathrm{C} 7 *=123.7(7), \mathrm{C} 6 *-\mathrm{C} 7-\mathrm{C} 8=122.3(7), \mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9=125.7(7)$.

As an initial model, the Pd_{4} sandwich chain of all-trans-1,8-diphenyl-1,3,5,7-octatetraene (DPOT, $\mathbf{1}^{\prime}$) was synthesized according to eq 1 (74% isolated yield, counteranions were ex-

changed from BF_{4} to $\mathrm{BAr}_{\mathrm{f}}\left(=\mathrm{B}\left(3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{4}\right)^{8}$ to improve the solubility and crystallinity), and its crystal structure is shown in Figure 1.9 The component three chains were bound in a sandwich manner through $\eta^{3}: \eta^{2}: \eta^{2}: \eta^{3}$-coordination mode. The alternative description of $\mathbf{1}$ is $\mathbf{1 A}$ in Chart 2 involving three

Chart 2

bridging $\mathrm{C}=\mathrm{C}$ ligands in each DPOT, which may accord to the general formula shown in Chart 1. In the crystal structure, $\mathrm{Pd}-$ $\mathrm{Pd}-\mathrm{Pd}-\mathrm{Pd}$ skeleton is highly linear ($\mathrm{Pd} 2-\mathrm{Pd} 1-\mathrm{Pd} 1 *=178.25-$ $\left.(4)^{\circ}\right)$, and each $\mathrm{Pd}-\mathrm{Pd}$ length (outer, 2.7322(8) \AA; inner, 2.654(1) \AA) is normal and consistent with the four-centered, six-electron bond of the Pd_{4} core.

The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1}^{\prime}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ or acetone- d_{6} showed only sharp symmetrical DPOT signals at $23{ }^{\circ} \mathrm{C}$, which were
(8) (a) Nishida, H.; Takada, N.; Yoshimura, M.; Sonoda, T.; Kobayashi, H. Bull. Chem. Soc. Jpn. 1984, 57, 2600. (b) Brookhart, M.; Grant, B.; Volpe, A. F. Organometallics 1992, 11, 3920.
(9) Crystal data: $\mathrm{C}_{104} \mathrm{H}_{60} \mathrm{~B}_{2} \mathrm{~F}_{48} \mathrm{Pd}_{4} \cdot 3 \mathrm{Et}_{2} \mathrm{O} \cdot 2 \mathrm{H}_{2} \mathrm{O}, M=2927.16$, space group $P 2_{1} / c$ (no. 14), $a=13.094(2), b=24.229(2)$, and $c=19.497(4) \AA, \beta=$ $104.42(1)^{\circ}, U=5990(1) \AA^{3}, Z=2, F(000)=2912, D_{\mathrm{c}}=1.623 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu(\mathrm{Mo} \mathrm{K} \alpha)=7.17 \mathrm{~cm}^{-1}, 833$ variables refined with 10335 reflections collected at 223 K with $I>3 \sigma(I)$ to $R=0.072$.

Figure 2. ORTEP drawing of $\mathbf{2}^{\prime}\left(\mathrm{BAr}_{f}\right.$ anions were omitted for clarify). Selected bond distances (\AA) and angles $(\mathrm{deg}): ~ \mathrm{Pd} 1-\mathrm{Pd} 2=2.7463(8)$, $\mathrm{Pd} 2-\mathrm{Pd} 2 *=2.721(1), \mathrm{Pd} 1-\mathrm{C} 1=2.188(7), \mathrm{Pd} 1-\mathrm{C} 2=2.344(7), \mathrm{Pd} 2-$ $\mathrm{C} 3=2.129(6), \mathrm{Pd} 2-\mathrm{C} 4=2.218(7), \mathrm{Pd} 2-\mathrm{C} 5=2.203(6), \mathrm{Pd} 2-\mathrm{C} 6=$ $2.142(6), \mathrm{Pd} 1-\mathrm{C} 7=2.337(6), \mathrm{Pd} 1-\mathrm{C} 8=2.202(6), \mathrm{C} 1-\mathrm{C} 2=1.407-$ (10), $\mathrm{C} 2-\mathrm{C} 3=1.46(1), \mathrm{C} 3-\mathrm{C} 4=1.412(10), \mathrm{C} 4-\mathrm{C} 5 *=1.46(1), \mathrm{C} 5-\mathrm{C} 6$ $=1.410(9), \mathrm{C} 6-\mathrm{C} 7=1.451(10), \mathrm{C} 7-\mathrm{C} 8=1.402(9), \mathrm{Pd} 1-\mathrm{N} 1=2.152-$ (5), $\mathrm{Pd} 1-\mathrm{Pd} 2-\mathrm{Pd} 2 *=174.50(4), \mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Pd} 2=152.0(2), \mathrm{C} 1-\mathrm{C} 2-$ $\mathrm{C} 3=120.5(7), \mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4=120.9(8), \mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5 *=118.9(8), \mathrm{C} 4 *-$ $\mathrm{C} 5-\mathrm{C} 6=120.6(8), \mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7=121.8(8), \mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8=121.4(7)$.
significantly broadened at $-90{ }^{\circ} \mathrm{C} .{ }^{10}$ Although we were unable to obtain well-characterizable resonances at temperatures lower than $-90^{\circ} \mathrm{C}$, the spectral aspects suggest occurrence of a facile slippage of the DPOT ligands along the Pd_{4} array, forming a symmetrical $\eta^{2}: \eta^{2}: \eta^{2}: \eta^{2}$-complex (Chart 3). ${ }^{11}$ It is possible that

Chart 3

this complex, which may or may not be coordinated with solvents at the terminals of Pd_{4} chain, lies as an equilibrium species with the asymmetrical form $\mathbf{1}^{\prime}$ or as an intermediate in the ${ }^{1} \mathrm{H}$ NMR symmetrization process of $\mathbf{1}^{\prime}$.

In any case, such an alternative coordination mode was clearly confirmed by the reaction of $\mathbf{1}$ or $\mathbf{1}^{\prime}$ with 2 equiv of pyridine to give the pyridine association product $\mathbf{2}$ or $\mathbf{2}^{\prime}$ (eq 2, quantitative in $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) .{ }^{12}$ The crystal structure of $\mathbf{2}^{\prime}$ is shown in Figure 2. ${ }^{13}$

Each $\mathrm{Pd}-\mathrm{Pd}(\mathrm{Pd} 1-\mathrm{Pd} 2=2.7463(8) \AA, \mathrm{Pd} 2-\mathrm{Pd} 2 *=2.721(1)$ \AA) is again within a four-centered, six-electron Pd_{4} bond length. The $-(\mathrm{CH})_{8}-$ parts are maintained planar, although each phenyl group of DPOT leaps up from the $-(\mathrm{CH})_{8}$ - plane to avoid the steric congestion with pyridine ligands being accommodated at both ends of the Pd_{4} chain, which also brought about the slight

[^1]deviation of $\mathrm{Pd} 1-\mathrm{Pd} 2-\mathrm{Pd} 2^{*}$ angle $\left(174.50(4)^{\circ}\right)$ from 180° and the bent $\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Pd} 2$ angle $\left(152.0(2)^{\circ}\right)$ (N1 shifted away from the terminal Ph , on the mirror plane of the dication).

In addition to the preparation of the Pd_{4} chain (eq 1), the Pd_{3} sandwich chain of DPOT, $\left[\mathrm{Pd}_{3}(\mathrm{DPOT})_{2}\right]\left[\mathrm{BAr}_{\mathrm{f}}\right]_{2}\left(\mathbf{3}^{\prime}\right.$, Chart 4) was

Chart 4

3^{\prime}

4^{\prime}
obtained by reducing the amount of added $\operatorname{Pd}(0)$ from 3 to 2 equiv. The Pd_{5} chain of all-trans-1,12-diphenyl-1,3,5,7,9,11-dodecahexaene (DPDH), $\left[\mathrm{Pd}_{5}(\mathrm{DPDH})_{2}\right]\left[\mathrm{BAr}_{\mathrm{f}}\right]_{2}\left(4^{\prime}\right.$, Chart 4$)$, was also prepared from the reaction mixture $\{1 \mathrm{Pd}(\mathrm{II})+4 \mathrm{Pd}(0)$ with excess DPDH\}. The indicated structures of both Pd_{3} and Pd_{5} sandwich complexes were assigned by ${ }^{1} \mathrm{H}$ NMR spectra, showing sharp symmetrical polyene resonances even at the lower temperatures (see Supporting Information). Thus, in principle, there may be no limitation of the present synthetic strategy (Chart 1) with regard to the chain lengths.

It is noticeable that the bond length-alternation of the free all-trans-DPOT $\left(d_{\mathrm{C}=\mathrm{C}}=1.335 \AA(\mathrm{av})\right.$ vs $\left.d_{\mathrm{C}-\mathrm{C}}=1.443 \AA(\mathrm{av})\right){ }^{14}$ was considerably reduced in $\mathbf{1}^{\prime}$ and $\mathbf{2}^{\prime}(d=1.414 \AA(\mathrm{av}) / d=$ $1.413 \AA(\mathrm{av})$ for $\mathbf{1}^{\prime}$ and $d=1.408 \AA(\mathrm{av}) / d=1.46 \AA$ (av) for $\mathbf{2}^{\prime}$), presumably due to the considerably strong donating/back-donating interactions. ${ }^{15,16}$ Moreover, all the present sandwich chain complexes were thermally stable, and no degradation was observed, even in solution, due to the cooperative strengthening of the chain-chain binding by the sequential $\mathrm{Pd}-\mathrm{C}$ bonds. ${ }^{17}$

In conclusion, we designed and prepared novel organometallic sandwich chains, where a metal-metal bond chain is held in the " π-electron corridor" of two conjugated polyenes through two coordination modes. Investigation of the chemical and physical properties of the present complexes as well as synthesis of potential "metallo-sandwich wires" having much longer chains is currently in progress.

Acknowledgment. This work was supported by Grants-in-aid for Scientific Research, Ministry of Education, Science and Culture of Japan, and CREST of Japan Science and Technology Corp.

Supporting Information Available: Characterization and crystallographic data (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA992387F

[^2]
[^0]: (1) (a) Ginsburg, E. J.; Gorman, C. B.; Grubbs, R. H. In Modern Acetylene Chemistry; Stang P. J., Diederich, F., Eds.; VCH: New York, 1995; p 353. (b) Stotheim, T. A. Handbook of Conducting Polymers; M. Dekker: New York, 1986; Vols. 1 and 2.
 (2) For the metal-metal bond chain, see: (a) Miller, J. S. Extended Linear Chain Compounds; Plenum: New York, 1982; Vols. 1-3. For recent advances, see: (b) Finnis, G. M.; Canadell, E.; Campana, C.; Dunbar, K. R. Angew. Chem., Int. Ed. Engl. 1996, 35, 2772. (c) Palmans, R.; MacQueen, D. B.; Pierpont, C. G.; Frank, A. J. J. Am. Chem. Soc. 1996, 118, 12647. (d) Shieh, S.-J.; Chou, C.-C.; Lee, G.-H.; Wang, C.-C.; Peng, S.-M. Angew. Chem., Int. Ed. Engl. 1997, 36, 56. (e) Cotton, F. A.; Daniels, L. M.; Jordan, G. T.; Murillo, C. A. J. Am. Chem. Soc. 1997, 119, 10377. (f) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. J. Chem. Soc., Chem. Commun. 1998, 39.
 (3) A few π-coordinated acyclic polyene-transition metal complexes have been reported: (a) Whitlock, H. W.; Reich, C.; Woessner, W. D., J. Am. Chem. Soc. 1971, 93, 2483. (b) Wadepohl, H.; Büchner, K.; Pritzkow, H. Organometallics 1989, 8, 2745. (c) Adams, R. D.; Wu, W. Organometallics 1993, 12, 1243. (d) Mashima, K.; Fukumoto, H.; Tani, K.; Haga, M.; Nakamura, A. Organometallics 1998, $17,410$.
 (4) For a recent review for metal-containing organic $p \pi$-systems, see Kingsborough, R. P.; Swager, T. M. Prog. Inorg. Chem. 1999, 48, 123 and references therein.
 (5) Zhang, T.; Drouin, M.; Harvey, P. D. Inorg. Chem. 1999, 38, 1305.
 (6) $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{BF}_{4}\right]_{2}:$ Schramm, R. F.; Wayland, B. B. J. Chem. Soc., Chem. Commun. 1968, 898
 (7) $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}\right]:$ (a) Ukai, T.; Kawazura, H.; Ishii, Y.; Bonnet, J. J.; Ibers, J. A. J. Organomet. Chem. 1974, 65, 253. For an example of its use for multi-palladium complexes, see: (b) Fox, G. A.; Pierpont, C. G. Inorg. Chem. 1992, 31, 3718.

[^1]: (10) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}\right)$ of the $-(\mathrm{CH})_{8}-$ part of $\mathbf{1}^{\prime}: \delta 4.89(\mathrm{~d}, J=$ 13.2 Hz), 3.93 (dd, $J=11.3,12.7 \mathrm{~Hz}$), $3.27(\mathrm{~m}), 3.00(\mathrm{~m})$.
 (11) A related facile change of coordination mode of ethylene between $\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mu-\eta^{1}: \eta^{1}-\mathrm{C}_{2} \mathrm{H}_{4}$ on Os - Os has been reported: Ramage, D. L.; Wiser, D. C.; Norton, J. R. J. Am. Chem. Soc. 1997, 119, 5618. Bender, B. R.; Ramage, D. L.; Norton, J. R.; Wiser, D. C.; Rappé, A. K. J. Am. Chem. Soc. 1997, 119, 5628.
 (12) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$ of the $-(\mathrm{CH})_{8}-$ part of $\mathbf{2}^{\prime}: \delta 5.37(\mathrm{~d}, J=$ $12.7 \mathrm{~Hz}), 4.19$ (t, $J=11.3 \mathrm{~Hz}$), 3.42 (m), 3.24 (m).
 (13) Crystal data: $\mathrm{C}_{114} \mathrm{H}_{70} \mathrm{~N}_{2} \mathrm{~B}_{2} \mathrm{~F}_{48} \mathrm{Pd}_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{14}, M=2999.32$, space group $P \overline{1}$ (no. 2), $a=13.417(3), b=19.297(6)$, and $c=13.369(3) \AA, \alpha=106.00-$ (3), $\beta=94.42(2)$, and $\gamma=100.98(4)^{\circ}, U=3235(1) \AA^{3}, Z=1, F(000)=$ 1494, $D_{\mathrm{c}}=1.539 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo} \mathrm{K} \alpha)=6.64 \mathrm{~cm}^{-1}, 858$ variables refined with 10431 reflections collected at 223 K with $I>3 \sigma(I)$ to $R=0.064$.

[^2]: (14) Benet-Buchholz, J.; Boese, R.; Haumann, T. In The Chemistry of Dienes and Polyenes; Rappoport, Z., Ed.; John Wiley \& Sons: New York, 1997; pp 25-65.
 (15) Strong donating/back-donating interactions between Pd_{2} and bis- μ $\eta^{2}: \eta^{2}-\mathrm{C}_{4} \mathrm{H}_{6}$ ligands have been proposed in $\left[\mathrm{Pd}_{2}\left(\mu-\eta^{2}: \eta^{2}-\mathrm{C}_{4} \mathrm{H}_{6}\right)_{2}\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$: Murahashi, T.; Otani, T.; Mochizuki, E.; Kai, Y.; Kurosawa, H.; Sakaki, S. J. Am. Chem. Soc. 1998, 120, 4536.
 (16) It should be mentioned that a recent theoretical prediction suggested that when two intrinsically Peierls distortion materials, polyacetylene and transition metal chain, are linked to each other via σ - or π-bonds, there would no longer be a tendency for each to undergo a simple pairing distortion: Goldberg, N.; Tang, H.; Kroohs, N.; Hoffmann, R. J. Am. Chem. Soc. 1996, 118, 10294.
 (17) No pyridine adduct was observed when the Pd_{5} sandwich complex 4^{\prime} was treated with excess pyridine under the same condition as for the formation of $\mathbf{2}^{\prime}$. This may imply stronger cooperative strengthening in $\mathbf{4}^{\prime}$ than in $\mathbf{1}^{\prime}$. The Pd_{3} complex $\mathbf{3}^{\prime}$ and pyridine led to unidentified decomposition products.

